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Introduction - Control Barrier Functions

e Control Barrier Functions (CBFs) [1] are a tool for set invariance

* General formulation
— Let x € R",u € Y C R™ where U is compact
— Control-affine system: & = f(z) + g(x)u
— Afunction h : R® — R is a CBF if there exists a class-K function @ : R>o = Rx>g

such that
inf Vh(z)(f(z) + g(r)u) < a(-h(z))

uel
for all J:E’Hé{a:ER”|h(3:)§0},
— Given a CBF, the condition
Vh(z)(f(z) + g(z)u) < a(—h(z))

is sufficient to render the trajectory x(t) always inside # .

[1] Ames et al, “Control barrier functions: Theory and applications”, ECC 2019




Introduction - Control Barrier Functions

 CBFs are commonly implemented via online modifications of a nominal
control law using the quadratic program

u =arg min H’LL — unom(x)”g
ueld

such that Vh(z)(f(x) + g(x)u) < a(—h(z))

Without Obstacle With Obstacle and CBF




The Problem

Generally, systems operate with multiple constraints

« Multiple constraints {hx}+_, can be handled by either
— Developing a consolidated CBF h.as a smooth maximum of {hx 1L,
(or other consolidation method) [1]

U =arg min H’IL — unom(x)Hg
uel

such that Vh.(x)(f(z) + g(z)u < a(—h.(x))
— Applying multiple CBFs at once in a QP [2]

U =arg min Hu — unom(w)H%
uel

such that Vhg(z)(f(x) + g(z)u < a(—hi(z)), Ve=1,--- |N
* Both strategies are difficult to verify when ¢/ is bounded

[1] Black and Panagou, “Adaptation for validation of a consolidated control barrier function based control synthesis”, arXiv 2022
[2] Tan and Dimarogonas, “Compatibility checking of multiple control barrier functions for input constrained systems”, CDC 2022



The Problem - Example

e Suppose two CBFs hq, hs Ayu < by 7
1 B 7/
* Suppose a control set U
,
e Suppose astate z € Hi N Ho y
e This leads to two CBF conditions g (0 _6;{
NS/
Vhi(2)g(w)u < a1 (~hi (@) = Vhi(@)f(x)

—A, b, u
Vha(2)g(x)u < as(—ha(x)) — Vho(2) f(z) 7| e |
~ Q‘x,gaj_/u_\(_lz 2 ~ 20 QCJ A1u§b1 __AQUZbQ

:AQ :bg ' ' '

* The conditions are individually feasible but - . 0 1
1

not jointly feasible



Narrower Problem

* Question 1: Do 9H; and JH; intersect for some ¢, j?
— No Hi N Ho

* Then treat each CBF individually in a neighborhood
of its zero sublevel set [1]

0> ha(x) > —€

— Yes (7

* Keep reading
* This happens with most relative-degree 2 constraints

[1] Shaw Cortez, Tan, and Dimarogonas, “A robust, multiple control barrier function framework for input constrained systems”, LCSS 2022




Narrower Problem

* Question 2: Is N H. a viability domain (controlled-invariant set)?
— Yes

/Proposition ([1, Thm. 1]). Let {h;}?~, be CBFs and let A = N¥_ H; be a Viability\

domain. Then the controller v

u = argmin ||u — upom (£, 2)||5 + Z Ji: 0k
Ueu,5k21 k=1

such that Vhg(z)(f(x) + g(x)u) < dpar(—hr(x)), VE=1,--- M
kwhere Jr > 0, is feasible at every point z € A. )

— No

* This paper seeks tools to modify the CBFs {h }2L, so as to recover a controlled-
invariant set

[1] Zeng et al., “Safety-critical control using optimal-decay control barrier function with guaranteed pointwise feasibility”, ACC 2021



Problem Formulation

* @Goal: Find a controlled-invariant subset A4
of a specified set S
 Tool: CBFs

— We seek to express .4 using some
number of CBFs A = NI H}. so that
so we can use the QP control law on the
prior slide

e (Qverview

— Strategy 1 — geometry, formal guarantees

— Strategy 2 — algorithm/heuristic

where each h; is a CBF



Control Barrier Functions

Definition. Let X C Sand Y CU. A con-)
tinuously differentiable function A : R® — R is a

Control Barrier Function (CBF) for (X', )) if there
exists a € K such that

inf Vh(z)(f(z) + g(x)u) < a(-h(z))

uey

@rallxé?—[ﬂ?(. Y,

* Weuse X inplace of S to keep track of how we will gradually restrict S to a
smaller set X = A1 N Hp_1, Xy = S each time that we add a CBF



Result 1: Non-interference

"Definition. Two CBFs h; and h; are called non-interfering on a set X C S if
(Vhi(x)g(x)) - (Vh;j(x)g(x)) > 0 for all z € X.

A set of CBFs {hg}4+L, is call non-interfering if every pair of CBFs is non-

interfering.
o v
* Example , \
— Suppose g is the ) Vh:/\\\(" AERL /o
. . . Eth ,/ N - Vh- ”,’
identity matrix L 2 !\ |
y 20, - - 90,
/ -0, - = 0Q,
q1 1
Non-Interfering Interfering



Result 1: Quadrant Extension Property

* Let YV be asubset of I/ that possesses the U
“gquadrant extension property (QEP)”
— See paper for definition and for a second similar
property
* Design CBFs one-at-a-time for the smaller control
set )V and compute the QP over all of U/




Result 1: Theorem

‘Theorem. Let Y be any set with the QEP w.r.t U. Let {hg}L, each be a)
CBF for (X,)) with ay € K. If {h} | are non-interfering, then the set

pan () = {u €U | Vhi(2)(f(2) + g(@)u) < ap(—hi(2)), Vb =1,---, M}

kis nonempty for all z € X N (N1, Hy). 1A2u <b, ,”,
* That is, if we design our CBFs for the smaller set . olB h
of controls )V, then the CBFs will all be feasible ¥ ol
together over the complete set of controls U/ o EZ;}

Alu = bl 1

L,
"Au < by - - Adu=b

-1 0 1
U1




Result 2: Interfering CBFs Strategy

— Left: Position-space ¢ € R? of a double integrator ¢ = v, 0 = u

\ .-~~~ — Because the CBFs are interfering, they may allow an agent to
th .” . . . . . . e . .
3 gain excessive velocity in the direction of their intersection

' — We can solve this by adding an additional CBF to limit the
agent velocity in that direction




Result 2: Interfering CBFs Example

* See paper for the complete algorithm for adding CBFs
* Example:

— 3D orientation space with two constraints
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— Red cones are unsafe states, S is the rest of the gray sphere

— These two constraints intersect at a “sharp” angle and therefore are interfering



Result 2: Interfering CBFs Example

Alg-1) Identify points of conflict

— We only need to look for points
1. Inthe current workingset X =S N ( ﬂﬂil Hk)

2. Inthe boundary of at least two sets OH,; N OH,;
3. Where the CBFs 15, Ii; are interfering o8-
(Vhi(z)g(z)) - (Vhj(z)g(x)) <0 o8-

— There are two clusters of points
in X where conflicts occur
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Result 2: Interfering CBFs Example

Alg-2) Remove clusters using additional CBFs
— This requires a method to produce CBFs, which will be problem-specific

:

1 05 0 05 1 05 0 05 -1 ’1y ’0-5| 0‘ 0-5‘ 1I1 |0-5 ‘0 "0-5 <
Automated solution: exclude Expert solution: add one
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Alg-3) Check for conflicts again (with the new CBFs) and repeat as necessary



Conclusions

* We have presented tools for the construction of controlled-invariant sets
defined using intersections of CBF sets

— We first presented conditions for a set of non-interfering CBFs to form a controlled-
invariant set

— We then sketched an algorithm to add CBFs when the initial CBFs are interfering
* This consists entirely of offline analysis to find a controlled-invariant set as
opposed to online adaptation/learning approaches
* QOpen questions
— How to perform similar design for systems with disturbances

— Can one write a general form for the added CBFs instead of having tools specific to a
particular system (e.g. the cones in the presented example)

— How to guarantee convergence of the algorithm



Thank You To Our Sponsors
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Backup - Result 1: Quadrant Extension Property

* Given asetof controls V C U4 C R™
 Draw m orthogonal hyperplanes that meet at a point p € R™

* Require that every hyperplane contain at least one pointin Y
U

Definition. The set ) C U is said to possess the quadrant extension property
(QEP) w.r.t. U if the point p lies in U for any combination of m hyperplanes
satisfying the above construction.




Backup - Result 1: Quadrant Extension Property

 Examples:

U2
o

1
LY

Definition. The set ) C U is said to possess the quadrant extension property
(QEP) w.r.t. U if the point p lies in U for any combination of m hyperplanes
satisfying the above construction.
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